Differential proliferative responses of cultured Schwann cells to axolemma and myelin-enriched fractions. II. Morphological studies.
نویسندگان
چکیده
Axolemma-enriched and myelin-enriched fractions were prepared from bovine CNS white matter and conjugated to fluorescein isothiocyanate (FITC). Both unlabelled and FITC-labelled axolemma and myelin were mitogenic for cultured rat Schwann cells. Treatment of Schwann cells with the FITC-labelled mitogens for up to 24 h resulted in two distinct morphological appearances. FITC-myelin-treated cells were filled with numerous round, fluorescent-labelled intracellular vesicles, while FITC-axolemma-treated cells appeared to be coated with a patchy, ill-defined fluorescence, primarily concentrated around the cell body but extending onto the cell processes. These observations were corroborated under phase microscopy. Electron microscopy revealed multiple, membrane-bound, membrane-containing phagosomes within myelin-treated cells and to a far lesser extent in axolemma-treated cells. The effect on the expression of the myelin-mediated and axolemma-mediated mitogenic signal when Schwann cells were treated with the lysosomal inhibitors, ammonium chloride and chloroquine, was evaluated. The mitogenicity of myelin was reduced 70-80% by these agents whereas the mitogenicity of axolemma was not significantly altered under these conditions. These results suggest that axolemma and myelin stimulate the proliferation of cultured Schwann cells by different mechanisms. Myelin requires endocytosis and lysosomal processing for expression of its mitogenic signal; in contrast, the mitogenicity of axolemma may be transduced at the Schwann cell surface.
منابع مشابه
Differential proliferative responses of cultured Schwann cells to axolemma- and myelin-enriched fractions. I. Biochemical studies
Cultured rat Schwann cells were treated for 72 h with axolemma- and myelin-enriched fractions prepared from rat brainstem. [3H]Thymidine was added to the cultures 48 h before the termination of the experiment. Although, both fractions produced a dose-dependent uptake of label into Schwann cells, the shape of the dose response curves and rates at which [3H]thymidine was incorporated were differe...
متن کاملLipid composition of axolemma-enriched fractions from human brains.
The lipid composition was determined for axolemma-enriched fractions and myelin which were isolated via a preparation of purified myelinated axons. The myelin had a lipid composition which was compatible with that previously reported for myelin isolated by alternative procedures. The most dense axolemma-enriched fraction contained 25.3% cholesterol, 25.8% galactolipid (21.3% cerebrosides and 4....
متن کاملImmunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells
The myelin-associated glycoprotein (MAG) is an integral membrane glycoprotein that is located in the periaxonal membrane of myelin-forming Schwann cells. On the basis of this localization, it has been hypothesized that MAG plays a structural role in (a) forming and maintaining contact between myelinating Schwann cells and the axon (the 12-14-nm periaxonal space) and (b) maintaining the Schwann ...
متن کاملDevelopmental changes in myelin-induced proliferation of cultured Schwann cells
Schwann cell proliferation induced by a myelin-enriched fraction was examined in vitro. Although nearly all the Schwann cells contained material that was recognized by antisera to myelin basic protein after 24 h, only 1% of the cells were synthesizing DNA. 72 h after the addition of the mitogen a maximum of 10% of the cells incorporated [3H]thymidine. If the cultures were treated with the myeli...
متن کاملControl of peripheral glial cell proliferation: enteric neurons exert an inhibitory influence on Schwann cell and enteric glial cell DNA synthesis in culture.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurocytology
دوره 14 4 شماره
صفحات -
تاریخ انتشار 1985